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The molecular structure of fluids composed of dendrimers of different generations is studied using
nonequilibrium molecular dynamics~NEMD!. NEMD results for dendrimer melts undergoing
planar Couette flow are reported and analyzed with particular attention paid to the shear-induced
changes in the internal structure of dendrimers. The radii of gyration, pair distribution functions and
the fractal dimensionality of the dendrimers are determined at different strain rates. The location of
the terminal groups is analyzed and found to be uniformly distributed throughout the space occupied
by the molecules. The fractal dimension as a function of strain rate displays crossover behavior
analogous to the Newtonian/non-Newtonian transition of shear viscosity. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1755659#

I. INTRODUCTION

Dendrimers represent a special class of highly branched
synthetic polymer. They are composed of relatively short
chains with multifunctional groups at both ends built around
a central core with one layer added per generation. Their
structure is characterized by the number of generations~g!,
functionality of the end groups~f !, and the number of mono-
mers in the chain units~b!. Dendrimers of generation 1 to 4
with 3-functional end groups andb52 are presented in Fig.
1. Generation 0 molecules~not illustrated! represent the lim-
iting case of a simple star polymer with a central core andf
linear arms. It is evident from Fig. 1 that increasing the gen-
eration number results in a highly symmetrical three-
dimensional structure. The total number of monomersN
grows exponentially with generation:

N5 f b~~ f 21!g1121!/~ f 22!11. ~1!

This rate of growth is faster than the available volume
(;g3) and the resulting effect of increasing density and ex-
cluded volume are responsible for unusual solution and bulk
properties.1–3

The first theoretical analysis of the structure of dendrim-
ers was reported by de Gennes and Hervet4 using a mean
field approach~modified version of Edwards’ self-consistent
fields!. Assuming that the branches of growing dendrimers
always face outwards and the monomers belonging to the
same generation lay in concentric shells, they observed mol-
ecules with hollow flexible inner cores and dense rigid outer
shells. Their work determined the limiting generation num-
bers for perfect growth~excluded volume effect!, and distri-
bution of terminal groups on the outermost surface. They
reported that the size of dendrimers changes with the number
of monomers asR}N1/5, where R is the mean molecular
radius of gyration, giving a fractal dimensionalitydf55.

Atomistic simulations using a self-avoiding walk were
reported by Lescanec and Muthukumar.5 Molecular dynam-
ics simulations were performed by Murat and Grest6 and de
Gennes’s model was revised by Zook and Pickett.7 Other
equilibrium molecular simulation studies have reported the
structure of isolated8,9 and bulk10 homogeneous dendritic
polymers. In contrast to the early work of de Gennes and
Harvet,4 the current consensus is that the structure of den-
drimers is characterized by a dense core, highly folded
branches and terminal groups distributed uniformly through-
out the interior of the molecule. Although there is now con-
sistent agreement for the qualitative structural features of
dendrimers, there are considerable quantitative differences
which depend on the details of the dendrimer studied and the
external physical conditions. The quantitative difference be-
tween different dendrimers is apparent in the scaling behav-
ior of the radius of gyration~dendrimer size! with respect to
the number of monomers. For example, the radius of gyra-
tion has been observed to scale asN0.22 ~Ref. 5!, N0.3 ~Ref.
6!, or N3/5 ~Ref. 7!.

Theoretical models have been developed to describe the
properties of dendrimers,11 however previous work has al-
most exclusively described properties in solution. Relatively
little theoretical or experimental work has been undertaken
for either dendrimer melts or systems away from equilib-
rium. In contrast, this work is devoted to molecular simula-
tions of dendrimers in the melt. We report atomistic simula-
tions of shear-induced changes in the structure of model
dendrimers using nonequilibrium molecular dynamics
~NEMD!. To the best of our knowledge this is the first re-
ported NEMD study of dendrimers. However, other
workers12 have recently examined the shearing behavior of
dendrimers using Brownian dynamics. In contrast to our
work, these studies were confined to behavior in solution
rather than a melt.

The results of our NEMD simulations in the melt indi-
cate that at certain strain rates the molecules become
stretched with fewer entangled branches. This flow-induced
deformation leads to the characteristic shear-dependent vis-
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cosity for molecular fluids. We also calculate the fractal di-
mension of dendrimers and report the manner in which it
changes with the strain rate. In contrast to other studies1,5 in
which a single scaling behavior for dendrimers was assumed,
we attempt to analyze in detail the variation of dimensional-
ity of dendrimers with generation number.

II. SIMULATION DETAILS

A. Dendrimer model

We model three-dimensional dendrimers at a coarse-
grained level using uniform beads to construct a molecule.
The freely jointed interacting beads correspond to the whole
monomers or even groups of them, neglecting their atomic-
scale structure. This is a reasonable assumption as we are
primarily interested in the mechanical and structural proper-
ties of the macromolecules which are dominated by their
large-scale properties.13 All beads have mass assigned tom
51 in reduced units. The dendrimers studied here have a
single core, which is the common origin of all the branches
of the molecule. Examples of dendrimers composed in this
way are illustrated in Fig. 1.

The component beads interact via a Weeks–Chandler–
Anderson ~WCA!14 potential. The WCA potential is the
Lennard-Jones potential truncated at the position of the mini-
mum and shifted to eliminate the discontinuity:

Ui j
LJ54«F S s

r i j
D 12

2S s

r i j
D 6G1« for r i j /s,21/6,

~2!
Ui j

LJ50 for r i j /s>21/6,

wherer i j is the separation between the sites represented by
atoms i and j, « is the potential well depth ands is the
effective diameter of the atoms. The WCA potential results
in a purely repulsive potential that includes the effect of ex-
cluded volume.

Adopting the common practice of molecular
simulation,15 all quantities are reported in reduced units rela-
tive to the LJ parameters:r i j* 5r i j /s, r* 5rs3, T*
5kBT/«, P* 5Ps3/«, ġ* 5(ms2/«)1/2ġ, h*
5(s4/m«)1/2h with both « ands being assigned a value of
one. Herer is the system density,T is the kinetic tempera-
ture,P is the pressure tensor,ġ is the strain rate andh is the
shear viscosity. For simplicity of notation, hereafter the as-
terisk will be omitted.

For the chemically bonded atoms, an attractive finitely
extensible nonlinear elastic~FENE! potential16 is added

Ui j
FENE520.5kR0

2 ln@12~r i j /R0!2# for r i j <R0 ,
~3!

Ui j
FENE5` for r i j >R0 ,

whereR0 is a finite extensibility, andk is a spring constant.
The FENE potential in combination with the WCA repulsive
interaction creates a potential well for the flexible bonds that
maintain the topology of the molecules. In this work we set
R051.5 andk530. This means that the average distance
between the connected atoms in equilibrium at temperature
T51.25 is approximately 0.97. The choice of intermolecular
potentials for the simulation of fluids is discussed
elsewhere.15

Collections of dendrimers with trifunctional end groups
( f 53), spacers composed of two beads (b52), and genera-
tions 1–4 ~D2G1, D2G2, D2G3, D2G4! were constructed
and compressed to the required density (r50.84). The
sample consisted of 256 molecules in the case of D2G1 and
125 molecules for higher generations with 19, 43, 91, and
187 beads per molecule for generations 1 to 4, respectively.
Periodic boundary conditions have been applied to exclude
effects associated with surfaces and the small volume of the
system.

B. NEMD simulation

Shear flow of the fluid was imposed by applying a mo-
lecular version of the homogeneous isothermal shear algo-
rithm ~SLLOD!.17 The equations of motion for beada in
moleculei are given as

ṙ ia5
pia

mia
1 iġyi ,

~4!

ṗia5Fia2 i
mia

Mi
ġpyi2zM

mia

Mi
pi ,

wherer ia andpia represent the atomic position and thermal
~peculiar! momentum of sitea on moleculei, pi is the mo-
mentum of the molecular center of mass of moleculei and
Mi is the mass of moleculei. The strain rate is defined by
ġ5]ux /]y, where u is the fluid streaming velocity. The
streaming velocity of the molecule is determined by the po-
sition of its center of mass and has the formiġyi , whereyi

is the position of the molecular center of mass; no further
assumptions are made on the rotational degrees of freedom
of the molecule.zM is a thermostat constraint multiplier,
given by

FIG. 1. Illustration of dendrimers of generations 1 to 4 modelled using
freely jointed beads interacting via the FENE potential.
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zM5
( i 51

Nm ~Fi•pi2ġpxipyi!/Mi

( i 51
Nm pi

2/Mi

, ~5!

where Nm is the number of molecules in the system. To
control temperature we used Gauss’ principle of least con-
straint applied to the molecular kinetic temperatureTM cal-
culated from the center of mass peculiar momenta according
to the formula

(
i 51

Nm pi•pi

2Mi
5

3N24

2
kBTM . ~6!

The algorithm has been discussed in detail previously by
Edberget al.18 and has recently been used to study the non-
linear shear and elongational rheology of polymer melts.19

The justification for using the molecular version of the
SLLOD algorithm with a thermostatted molecular kinetic
temperature has been discussed in detail by Traviset al.20

All simulations were performed at constant volume at a
temperatureTM51.25. The equations of motion of the atoms
were integrated with a time-stepDt50.001 ~reduced units!
using a fifth-order Gear predictor corrector differential equa-
tion solver.21 After initial equilibration~typically several mil-
lion time-steps depending on the strain rate! trajectories were
accumulated and thermodynamic, mechanical and configura-
tional averages were calculated.

The molecular pressure tensor can be computed as18

PMV5(
i 51

Nm pipi

M i
2

1

2 (
i 51

Nm

(
a51

n

(
j Þ i

Nm

(
b51

n

r i j Fia j b , ~7!

wherer i j is the center of mass separation of moleculesi and
j, Fia j b is the force on sitea in moleculei due to siteb in
moleculej, andn is the total number of interaction sites in a
molecule. The strain rate dependent viscosity can by derived
as

h~ġ!52
^Pxy

M 1Pyx
M &

2ġ
. ~8!

C. Structural analysis

The extension of a molecule in space can be character-
ized by its radius of gyration. The average squared radius of
gyration tensor is given by the expression:

Rg
2[K (a50

n ma~ra2g!~ra2g!

(a50
n ma

L , ~9!

whereg is the position of the molecular center of mass, and
^¯& denotes an ensemble average. The value of the squared
radius of gyration is defined as the trace of the tensor (Rg

2

5Tr(Rg
2)), which can be compared with experimentally

measured radial sizes of the dendrimers.
Further analysis of the tensor of gyration can provide

insights into the shape of the molecules. For each dendrimer
we derived eigenvalues of the tensor of gyration (L1 , L2 ,
andL3) and averaged them over the ensemble. These eigen-
values can be interpreted as the linear dimensions of the
ellipsoid occupied by the average molecule discarding its
orientation. At equilibrium, ratios of these eigenvalues de-

pend on the generation of the dendrimer and converge to 1
for highest generations~spherical symmetry!. Changes in
these values with strain rate quantitatively describe flow in-
duced stretching of dendrimers and this process, in combina-
tion with molecular alignment, can lead to the macroscopic
anisotropy of the material. Alternatively, the tensor of gyra-
tion can be averaged over the ensemble prior to its orthogo-
nalization. At equilibrium, because of orientational disorder,
the eigenvalues (L18 , L28 , andL38) are equal. Breaking of the
spherical symmetry is associated with alignment of the den-
drimers and can be directly related to birefringence experi-
ments.

To analyze the entanglement and back folding of the
branches constituting the same dendrimer, we used a radial
distribution functiong(r ) of the terminal groups with refer-
ence to the central unit defined as

g~r !5
^( i 51

Nm (ad~ ur ia2r i1u!&
4pr 2Nm

, ~10!

wherer i1 is the position of the core,a runs over all terminal
groups of the dendrimer.

III. RESULTS AND DISCUSSION

In contrast to previous simulation studies, which have
focused on dendrimers in solution, our work was performed
at conditions (T51.25, r50.84) that result in a melt. The
structure of dendrimers in the melt away from equilibrium
has been analyzed over a wide range of strain rates. The
average squared radii of gyration (Rg

2) for the first four gen-
erations are shown in Fig. 2. Values ofRg

2 are a measure of
the size of the dendrimer. In each case, for small strain rates
~different ranges dependent on the generation!, the size of the
dendrimer remains constant and it is largely unchanged from
its equilibrium value. In contrast for large values of strain
rate, there is a noticeable increase in the value ofRg

2 which
indicates that shear-induced stretching of the molecules has
occurred. For a given value of strain rate, the extent of shear-
induced stretching increases with generation number. For
each generation the radius of gyration asymptotically follows
the power lawRg}ġa with the values of the exponenta

FIG. 2. Squared average radii of gyration vs strain rate for dendrimers of
generations 1 to 4. Error bars have been omitted because they are smaller
than the symbols representing data points.
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50.033760.0008, 0.040 6660.0008, 0.047260.0006,
0.050360.0012 for generations 1 to 4, respectively.

Radii of gyration for selected values of strain rate are
shown as a function of molecular mass in Fig. 3. For each
steady state condition, the slope of a linear fit was obtained.
The reciprocal of this slope defines the average fractal di-
mension of the dendrimers:Rg}M v, df51/v. For each
strain rate the slope decreases with the mass, hence the frac-
tal dimension of dendrimers increases with the generations.
This is in agreement with the trends reported graphically by
Stechemesser and Eimer1 and Lescanec and Muthukumar.5 It
should be noted that using a linear fit is an approximation
only. A closer examination of Fig. 3 shows that the relation-
ship between the radius of gyration and molecular mass is
not strictly linear.

The variation of the fractal dimension with respect to
strain rate is illustrated in Fig. 4. The average fractal dimen-
sion of the dendrimers in equilibrium and for small strain
rates is approximately 3.1660.16 and decreases with in-
creasing strain rate down to;2.5560.10 for ġ50.1. The
equilibrium result of 3.16 is close to the fractal dimension of
;3 obtained by Murat and Grest6 and observed experimen-
tally by Scherrenberget al.2 and Stechemesser and Eimer.1

The fact that the value of the fractal dimension is comparable
to the dimensionality of the available space indicates that the
structure of dendrimers is very compact.

To analyze the changes of the slope ofRg versusM with
different generations, the fractal dimensions obtained from
two points at a time~two generations! are illustrated in Fig.
5. The fractal dimension remains constant for small strain
rates. However, at a sufficiently large value of strain rate it
suddenly becomes strain rate dependent, decreasing with in-
creasing strain rate. The crossover point from strain rate in-
dependent to strain rate dependent behavior is a function of
the generation number. The crossover point shifts towards
smaller values of strain rate for higher generations. For the
highest generations illustrated in Fig. 5~G3–G4!, the cross-
over point is probably below the range of strain rates studied.

We observe that the strain rate dependence of fractal
dimension~Fig. 5! is qualitatively similar to the behavior of
shear viscosity. The shear viscosities of polymeric fluids ex-
hibit a transition from Newtonian to non-Newtonian
behavior.19 At low strain rates, the viscosity is independent
of strain rate, whereas at higher strain rates shear thinning is
observed, i.e., the viscosity decreases as a function of strain
rate. In Fig. 6 the shear viscosity of the first four generations
of dendrimers is presented which demonstrate the crossover

FIG. 3. The radius of gyration as a function of the molecular mass for
dendrimers of generations 1 to 4 for different values of strain rate.

FIG. 4. The average~total! fractal dimension of dendrimers as a function of
strain rate.

FIG. 5. The fractal dimension of dendrimers of different generations as a
function of strain rate. The lines are only intended to guide the eye.

FIG. 6. The viscosity-strain rate behavior for dendrimers of generations 1 to
4. The lines are only intended to guide the eye.
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from Newtonian to non-Newtonian behavior. The crossover
values of strain rate for the viscosity and fractal dimension
phenomena cannot be compared directly. The viscosity-strain
rate curves characterize the behavior for a given dendrimer
generation, whereas fractal dimensions were derived from
the changes between the generations. However, comparison
of Fig. 5 with Fig. 6 shows that there is at least qualitative
agreement in terms of the relative position of the crossover
points. The rheological properties of dendrimer melts will be
discussed in more detail in a forthcoming publication.22

The fractal dimensions in equilibrium (ġ50) can be di-
rectly compared with the values measured experimentally by
Mallamaceet al.3 They report the fractal dimension of the
low generation dendrimers asdf'2.460.4. Our value of 2.7
is in good agreement with their experimental results. For
higher generations, the fractal dimension gradually increases
through 3.2 in the middle range to 3.7 for the largest den-
drimer.

To analyze flow-induced changes on the shape of den-
drimers in greater detail, we derived the eigenvalues of the
tensor of gyration. In Fig. 7 we present the averaged eigen-
values of the tensor as well as the eigenvalues of the aver-
aged tensor of gyration for the dendrimers of generation 3
~results for other generations are qualitatively similar!. The
variation of the former can be related to the stretching of the
molecules and becomes significant at the strain rates above
the critical value discussed above. This is different in the
case of the eigenvalues of the averaged tensor of gyration,
which also take into account the orientation of the molecules.
These values depart from the equilibrium values starting
from the smallest values of the strain rate. Direct comparison
of the behavior of these properties with the variation of vis-
cosity with respect to strain rate@Fig. 7~c!# indicates that the
onset of flow-induced molecular deformation occurs at ap-
proximately the same strain rate at which the crossover from
Newtonian to non-Newtonian regimes is observed. This sug-
gests that deformation of dendrimers is mainly responsible
for the viscoelastic properties of the melt. Molecular align-
ment, which occurs at all strain rates, appears to have a less
significant influence than deformation.

Figure 8~a! shows the distribution of the terminal mono-
mers from the center of the molecule at a weak field strength
close to equilibrium. In Fig. 8~b! the same curves are shown
for a system away from equilibrium at a strain rateġ50.1,
and in Fig. 8~c! we give a comparison of distributions at both
field strengths for a D2G4 dendrimer. In each case the end
groups are found everywhere throughout the interior of the
molecule. Our finding is in agreement with earlier computer
simulations5–7,9 and the experimentally observed back fold-
ing of branches by Scherrenberget al.2

When the system undergoes shearing flow, the dendrim-
ers become stretched~see radii of gyration!, as does the dis-
tribution of the monomers constituting the outmost shell. The
fact that some of them are found at the distance of (g

11)P l̄ (g5generation number,P522 length of the linear

units between the branching points,l̄ 5average bond length!
indicates that some of the branches are fully stretched.

IV. CONCLUSIONS

For the first time, NEMD simulations are reported for
the shearing behavior of dendrimers in the melt of genera-
tions up to four. The variation of viscosity as a function of
strain-rate displays the characteristic transition from Newton-
ian to non-Newtonian behavior that is common to many real
macromolecules. We observe that the variation of the fractal
dimension with respect to strain rate behaves in an analogous
way to shear viscosity with a crossover point between strain
rate independent and strain rate dependent regions. The frac-
tal dimension has values from 2.4–3.7 depending on the
strain rate. The values obtained close to equilibrium are con-
sistent with experimental equilibrium values. Analysis of the
radius of gyration shows that shear induced stretching occurs

FIG. 7. The averaged eigenvalues of the molecular tensor of gyration~a!,
eigenvalues of averaged tensor of gyration~b!, and the shear viscosity~c! as
a function of strain rate for the dendrimer of generation 3~D2G3!. In panel
~a!, the lines represent fits ofL i in the range of small strain rates, whereas in
panel ~c! the Newtonian viscosity and a power-law function for the non-
Newtonian viscosity were fit.
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and this effect is particularly pronounced for large dendrim-
ers. The deformation of molecular shape is mainly respon-
sible for the macroscopically observed shear thinning of the
dendrimer melt. The onset of both shape deformation and
shear thinning occur at a specific value of strain rate, which
depends on the generation of the dendrimer. In contrast, the
concurrent process of molecular alignment is observed for
the whole range of strain rates. Values of the radial distribu-
tion functions indicate that the terminal end groups can be
located in the interior of the dendrimer which is consistent
with experimentally observed back folding of branches.
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FIG. 8. Distribution of the terminal groups from the central~core! unit at~a!
close to equilibrium (ġ50.0001) and~b! ġ50.1. A comparison of close to
equilibrium and non-equilibrium results for the D2G4 dendrimer is illus-
trated in~c!.
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